简介:
|
The social characteristics of players in a social network are closely associated with their network positions and relational importance. Identifying those influential players in a network is of great importance as it helps to understand how ties are formed, how information is propagated, and, in turn, can guide the dissemination of new information. Motivated by a Sina Weibo social network analysis of the 2021 Henan Floods, where response variables for each node are available, we propose a new notion of supervised centrality that emphasizes the task-specific nature of a player's centrality. To estimate the supervised centrality and identify important players, we develop a novel sparse network influence regression by introducing individual heterogeneity for each user. To overcome the computational difficulties in fitting the model for large social networks, we further develop a forward-addition algorithm and show that it can consistently identify a superset of the influential nodes. We apply our method to analyze three responses in the Henan Floods data: the number of comments, reposts, and likes, and obtain meaningful results. A further simulation study corroborates the developed method. |